
Semi-transparent object recognition
Rishabh Ramteke

Indian Institute of Technology Bombay
Mumbai, India

rishabhramtekegsr@gmail.com

Markus Vincze
Automation and Control Institute

TU Wien, Vienna, Austria
Vincze@acin.tuwien.ac.at

Abstract—The internship project involves the topic of recog-
nising semi-transparent objects where we work on methods to
model these objects, study methods that detect and recognise
them, and finally will contribute to methods that estimate 6DOF
pose of objects for subsequent robotic grasping. The project will
involve using self attention for instance segmentation of semi-
transparent objects
We worked towards learning and detecting transparent objects
as needed for the project with plastic canisters and bottles. In
particular we worked on the simulation of transparent objects
and the rendering of realistic scenes with these object such that
we can create data for learning neural networks.

Index Terms—Region Based Convolutional Neural Networks,
Instance segmentation, self attention

I. INTRODUCTION

The main goal of this work was to create synthetic trans-
parent data so that it could be used as a training dataset
for various neural networks. Currently, there isn’t a lot of
data of transparent objects like bottles, glass, etc. available
and creating it from real scenes would be too much manual
work as the neural network requires millions of images for
each class of object in order to attain good recognizable
rates. Hence, the reason why we wanted to create synthetic
dataset. We use Blender software to setup scenes and then
render it to obtain various outputs like depth, RGB image and
image segmentation. Blender is a open source 3D creation
suite. It supports the entirety of the 3D pipeline—modeling,
rigging, animation, simulation, rendering, compositing and
motion tracking. The particular neural network we will look at
is the mask RCNN. Since, we will be using a network which
performs instance segmentation, we need to obtain this type of
output from Blender so that we can calculate the accuracy of
our model. We also need the depth images as training dataset
for pose estimation or detection tasks. From blender we can
directly output Depth but instead we will use Block-matching
algorithm to do this. The reason we do this is because the
depth that we get from Blender is the perfect depth and in
reality, there are some background effects like glare, shadows,
etc which causes to have a very different depth image. And if
we use the perfect depth images for training our model, then
we will get unrealistic results.
Before dicussing about Mask RCNN, we need to look at the
family of RCNNs.
Region Based Convolutional Neural Networks (R-CNN) is a
machine learning model for computer vision and specifically
object detection. Its goal was to take an input image and

produce a set of bounding boxes as output, where each
bounding box contains an object and also the category of the
object. The RCNN first generates a set of proposals or region
of interest (ROI) using selective search and then it runs all the
ROIs through the pre-trained CNN to produce output features.
These features are then run through a linear regression model.
Fast RCNN enhances the performance by combining all the
models and using ROI pooling, which slices out each ROI
from the network’s output tensor, reshapes it, and classifies it.
While Fast R-CNN used Selective Search to generate ROIs,
Faster R-CNN integrates the ROI generation into the neural
network itself.
Masked RCNN is faster RCNN combined with a FCN (fully
convolutional network). All the previous models focused only
on object detection but Mask RCNN also focus on semantic
segmentation. Thus, is allows us to perform instance segmenta-
tion which can be used for a variety of tasks (Ex: estimation of
human poses). This new model also replaced the ROI Pooling
with a new method called ROI align. Due to this, the strides
in convolution are not quantised and thus it can represent
fractions of a pixel. It preserves the spatial orientation of
features with no loss of data. The definition of Lmask (mask
loss function) allows the network to generate masks for every
class without the competition among classes.

Fig. 1. The Mask R-CNN framework for instance segmentation. (He et al.,
2017)

II. RELATED WORKS

A. Stereo depth vision [2]

In this blog post, the author explains the basic concepts of
stereoscopic vision and how we can use the block-matching
algorithm and extract depth from stereo using OpenCV library

of python.

Stereo Depth is based on the human binocular vision sys-
tem. It uses two parallel placed cameras in order to calculate
a image whose intensities reflect the distance of that point in
that image. This image is known as depth. We calculate it by
estimating disparities between matching key-points in the left
and right images. For this project, to estimate these disparities,
we use the OpenCV built-in block-matching algorithm. We

Fig. 2. Depth from Stereo algorithm finds disparity by matching blocks in
left and right images

used a similar setup to this for now. The system uses a baseline
of 9cm between the cameras, and the light projector is placed
between the two sensors so the idea is to generate stereo
images and compute depth using OpenCV library of Python.

B. Dot Pattern (Projected Texture)

Projected texture is a method of texture mapping that
allows a textured image to be projected onto a scene. The
quality of the results that we want to achieve with the block
matching algorithm depends mainly on the density of visually
distinguishable points so that the algorithm can find matching
points. Thus, adding some texture increases this density and
will significantly improve the accuracy.
In Blender, we created a filter in front of the light projector
and added the Kinect-pattern texture. This process is explained
in more detail in further sections.

C. Camera Matrix

An image pixel (u,v) is generated from world (x,y,z)
coordinates through a 3x4 matrix using projective coordinates:
kx = PX,
where k is a constant, x=(u, v, 1)t, X=(X,Y, Z,W)t,
and P can be decomposed as:

P = K[I|0]
[
R T
0t 1

]
= K[R|T]

where K can be written as : K =

αu s uo
0 αv vo
0 0 1


where :
f = focal length

αu =
f × upixels
unitlength

=
f

widthofapixelinworldunits

αv =
f × vpixels
unitlength

=
f

heightofapixelinworldunits
uo= u coordinate of principal point

vo=v coordinate of principal point
s=skew factor
Note : if we run the script “getcamerainfo.py” in blender,
we get the intrinsics K where entry [0,0] is fx.

III. DATASET

The main dataset used in this project are the YCBV and
ClearGrasp. YCB Object and Model Set is designed for
facilitating benchmarking in robotic manipulation. The set
consists of objects of daily life with different shapes, sizes,
textures, weight and rigidity, as well as some widely used
manipulation tests. YCB-Video dataset provides 6D poses
of 21 objects from the YCB dataset observed in 92 videos
with 133,827 frames. The ClearGrasp dataset contains more

Fig. 3. YCB objects

than 50,000 photorealistic renders with corresponding surface
normals, segmentation masks, edges, and depth, useful for
training a variety of 2D and 3D detection tasks. Each image
contains up to five transparent objects, either on a flat ground
plane or inside a tote, with various backgrounds and lighting.

Transparent Frame Opaque Frame

Transparent Depth Opaque Depth
Fig. 4. An example from ClearGrasp Dataset

IV. TASKS

A. setup a static scene and gather all outputs

My first task was just to mainly get familiarized with how to
use Blender software. First, in the layout tab, we add a plane
surface which will be used as a ”floor” on which we place

the objects. We also add a ’area’ light source with default
intensity to light up the scene. Then we add a camera. Then,
we import YCBV and ClearGrasp objects and set up a static
scene. We can give different locations and rotations to various
objects. We can also play around with their dimensions and
scales. We can use the camera perspective option to make sure
that the objects can be seen by the camera. Using the above

Fig. 5. A static scene setup using YCBV objects

Fig. 6. Composition Tab

composition tab fig.6, we can output RGB images and instance
segmentation. The depth that we get from this is the perfect
depth which we dont need for our experiments. To get instance
segmentation, first we need to give each object a specific pass
index whose value ranges from 0 to 255. Then as seen from
the composition tab, we add a ”divide” tab to divide all these
index values by 255 and then save it to a file location.

B. Setup to obtain depth and dot pattern

We add two cameras with the same camera intrinsics which
are at a distance of 9cm apart. In between the cameras, we add
a light projector and set its radius to 0. Then, in front of the
projector, we add a plane called ”filter” and give it a texture.
For the ”filter”, in the material properties, we set the surface
as ’Transparent BSDF’ and then we chose ’Image Texture’
and set ’kinect-pattern’ as the texture. We activate the nodes
and then in the shading tab, we make the following setting
as shown in the fig 8. We can play around with the values in
the mapping section and check which settings give the best
results.
This way, we obtain the dot pattern that we want. Then, we

render the output of both these cameras and then feed these

RGB image Instance segmentation

True depth

Fig. 7. Outputs from the scene

Fig. 8. Nodes in shading tab for texture mapping

two images in the blockmatching code to obtain the depth.
Blockmatching code :

left camera right camera

Fig. 9. Rendered images of camera after applying dot pattern

import numpy as np
import cv2
from google.colab.patches import cv2_imshow
from matplotlib import pyplot as plt
from skimage import io
import os
from PIL import Image
settings
use_pattern = True
use_sgbm = False
parameters
K = np.array([[1066.7800, 0.0000, 312.9869], [0.0000, 1067.4894, 241.3109],
[0.0, 0.0, 1.0]]) # -> get this from blender
fx = K[0, 0] # lense focal length -> px disparity to mm
baseline = 90 # distance in mm between the two cameras
disparities = 128 # num of disparities to consider ->
#also limits the maximum disparity (larger image - larger value)
block = 31 # block size to match -> smallest detail vs smoothness
units = 1000.0 # depth units -> mm to meters

load and convert image pair
left = io.imread(os.path.join(path, f’ycbv49left{"_p" if use_pattern else ""}.png’))
right = io.imread(os.path.join(path, f’ycbv49right{"_p" if use_pattern else ""}.png’))
left_gray = cv2.cvtColor(left, cv2.COLOR_BGR2GRAY)
right_gray = cv2.cvtColor(right, cv2.COLOR_BGR2GRAY)
compute disparity (via block matching) and convert to depth
if use_sgbm:

sbm = cv2.StereoSGBM_create(numDisparities=disparities, blockSize=block)
else:

sbm = cv2.StereoBM_create(numDisparities=disparities, blockSize=block)
disparity = sbm.compute(left_gray, right_gray).astype(float)/16
depth = np.zeros(shape=left_gray.shape).astype(float)
depth[disparity > 0] = (fx * baseline) / (units * disparity[disparity > 0])
depth = depth
plot disparity and depth
plt.subplot(1, 2, 1)
plt.title(’disparity [px]’)
plt.imshow(disparity, ’gray’)
plt.subplot(1, 2, 2)
plt.title(’depth [m]’)
plt.imshow(depth.clip(0, 3), ’gray’)
clip depth to range [0, 3m] to remove outliers for visualization
plt.show()

The Blockmatching code has various parameters. fx is the
focal length of the camera which we set in Blender. You can
use the default value of blender. Later on, for testing, we
used Intrinsic camera matrix from the YCBV BOP file of a
particular scene, to calculate the focal length. Baseline is the
distance between the two cameras. For now, I set it as 9cm as
mentioned in the Intel blog post. Disparity parameter controls
the number of disparities to be considered between the two
images. If the size of the image increases, then we need to
set a larger value for this. This algorithms divides the image
into various blocks and then checks if it matches with the
blocks in the other image. The block parameter sets the size
of this block. There is a tradeoff between smallest detail vs
smoothness. OpenCV library has built-in functions to compute
the disparities. By using this, we can find the depth. Check
the code for reference.

Fig. 10. Ouput of blockmatching code for Block = 31 and disparity = 256

V. TESTING WITH YCBV SCENES TO CHECK PIPELINE

A. proper scene set-up: load poses from bop files

RGB images when rendered should align with the real RGB
image for the same scene/frame. If they align, that means our
camera settings and object poses are correct
As explained earlier in subsection IV-A, we setup a scene.
For my first test, I used folder 000049’s 1st scene from the
ycbv test bop 2019 dataset. Later I did the same testing for
folder 000049’s 1130 scene and folder 000056’s 1049 scene.
The folder 000049 contains scene camera.json BOP file which
contains information on the camera setups. Cam K is the
intrinsic matrix. We use the equations given in subsection
II-C to calculate the camera properties. These equations help
us to calculate the focal length, Shift X, Shift Y, height and
width and then set these values in the blender. We chose the

camera sensor fit setting as ”Horizontal”. We choose these
same setting for both the cameras. We place the left camera at
origin and the right camera at baseline distance (x) away from
the left camera. We set it at position (x,0,0) to make sure both
the cameras have a parallel view port. Then we set the rotation
of both these cameras as (0◦, 180◦, 180◦) as we need a top
view of the scene according to the BOP file. Then, we need
to setup a plane surface ”floor”. Cam R w2c is the rotation
matrix of the floor. We convert it into quarternion values and
then set these value in the ”floor” location. Cam t w2c is the
coordinates of the floor. We set the dimensions and scales of
the floor such that it covers the camera perspective.
scene gt.json BOP file contains the coordinates and rotation
matrix of all the objects present in that particular scene. We
follow the same process as we did for the floor to setup the
location and orientation of all the objects.
Note: Some of the YCBV objects have offset values which
need to be taken into account while setting up the scene.
Moreoever, these offsets are in the model space so we have to
apply the negative offset to all the objects in the model space.
After our scene is setup, we output a RGB image and then
compare it with the real image and its instance segmentation.
As we can see from the fig 11, they match perfectly. Hence
our camera setting and poses are correct.

vs real image vs segmentation

Fig. 11. Checking the alignment of RGB image

B. render the dot-pattern image and run the depth estimation
pipeline

In this step, we have to visualize the absolute difference
between the estimated and real depth image. If they align and
error on the objects is in the range of mm, then the pipeline
is valid.
We place a spotlight projector in between the two cameras.
Make sure that the radius of this projector is 0. We setup the
dot pattern as mentioned in subsection IV-B. After applying
the dot pattern, we render the RGB image outputs and feed
it into the blockmatching code. We compute the absolute
difference between the depth estimated from the algorithm and
the real depth (present in the BOP files). From the fig 12, we
can see that there is still some error in the absolute difference.

Fig. 12. Absolute difference between estimated and real depth

C. Analysis of various parameters of the block matching
algorithm

For the same scene, we conducted experiments by chang-
ing disparity and block size parameters and output the
min,max,mean and std deviation of the absolute difference of
the estimated and real depth.

Disparity Max Min Mean Std Deviation
16 172.0904 0 10.5254518 10.46495031
32 170.6848 0 9.925622579 7.892287211
64 163.0648 0 9.779262983 6.093765765

128 35.72472558 0 9.418392191 5.433711155
256 25.58 0 9.499913867 5.482522733

TABLE I
VS DISPARITY. HERE, BLOCK = 31

Block Max Min Mean Std Deviation
15 170.6848 0 9.409773496 5.862876202
17 170.6848 0 9.403088239 5.71029012
19 132.2512 0 9.400118331 5.614950379
21 132.2712 0 9.393967102 5.552326695
23 132.2612 0 9.387412999 5.448593863
25 51.6632 0 9.394742657 5.43287788
27 35.72472558 0 9.403104762 5.432608308
29 36.57531429 0 9.411953376 5.435234286
31 35.72472558 0 9.418392191 5.433711155
33 25.58 0 9.42747528 5.433707234
35 25.58 0 9.437775842 5.434491126
37 25.58 0 9.447197217 5.436133139
39 25.58 0 9.456099276 5.438868621
41 25.58 0 9.463306198 5.443257039

TABLE II
VS BLOCK. HERE, DISPARITY = 128

Mean vs Block Std Deviation vs Block

Fig. 13. Plots w.r.t table 2

As we can see from the above tables and plots, we should
get the best results for this particular scene for Block = 23
and disparity = 128.
From fig 15, we can see that the absolute difference looks
good enough and thus we can say that our pipeline is doing a

Block Max Min Mean Std Deviation
15 153.61632 0 9.488126049 5.5058279
17 101.7959429 0 9.482188533 5.463616555
19 87.2602 0 9.48237901 5.454683467
21 25.58 0 9.484882824 5.456999555
23 25.58 0 9.487777756 5.462426938
25 25.58 0 9.490827167 5.467644527
27 25.58 0 9.493842781 5.472822304
29 25.58 0 9.496771429 5.47779685

TABLE III
VS BLOCK. HERE, DISPARITY = 256

Mean vs Block Std Deviation vs Block

Fig. 14. Plots w.r.t table 3

good job. We also conducted experiments to check the effect
of baseline parameter. We realised that its better to keep it a
lower value like 2cm. On decreasing the baseline, we can get
better results for lower values of disparity and thus we don’t
lose parts of the image.

REFERENCES

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2980–2988, 2017. doi:
10.1109/ICCV.2017.322.

”The basics of stereo depth vision – Intel® RealSense™
Depth and Tracking Cameras”, Intel® RealSense™
Depth and Tracking Cameras, 2021. [Online]. Available:
https://www.intelrealsense.com/stereo-depth-vision-basics/.
[Accessed: 14- Jun- 2021]

Fig. 15. Ouput of blockmatching code for Block = 23 and disparity = 128

	Introduction
	Related Works
	Stereo depth vision [2]
	Dot Pattern (Projected Texture)
	Camera Matrix

	Dataset
	Tasks
	setup a static scene and gather all outputs
	Setup to obtain depth and dot pattern

	Testing with YCBV scenes to check pipeline
	proper scene set-up: load poses from bop files
	render the dot-pattern image and run the depth estimation pipeline
	Analysis of various parameters of the block matching algorithm

