Liquid State Machine for CIFAR-10 Classification

Rishabh Ramteke
170070046
Indian Institute of Technology Bombay
Mumbai, India
170070046 @iitb.ac.in

Abstract—Liquid State Machine (LSM) is a neural model and
a type of reservoir computer that uses a spiking neural network
with real time computations which transforms the time varying
inputs stream to a higher dimensional space. The concept of LSM
is a novel field of research in biological inspired computation with
most research effort on training the model as well as finding the
optimum learning method. CIFAR-10 is an established computer-
vision dataset used for object recognition and is widely used for
testing classification algorithms. In this thesis project we have
used LSM for image classification on CIFAR-10 dataset. The
main goal was to decrease the computation time and increase the
accuracy. In LSM, preprocessing of data plays an important role
and thus I investigated the performance of LSM on converting
the image from spatial domain to frequency domain.

Index Terms—Liquid state machine, Short term plasticity,
Reservoir computing, Spiking neural network

I. INTRODUCTION

Spiking neural networks (SNNs) are artificial neural net-
works that closely imitate natural neural networks. SNNs not
only incorporate neuronal and synaptic state, but also the
concept of time into their operating model. The neurons in
the SNN do not transmit information at each propagation cycle
(which generally happens with typical multi-layer perceptron
networks), but instead transmit information only when the
membrane potential reaches a specific threshold value. When
the membrane potential reaches the threshold value, the neuron
fires and generates a signal that travels to other neurons which,
in turn, increase or decrease their potentials in response to this
signal.

The most prominent spiking neuron model is the leaky
integrate-and-fire model. In this, the momentary activation
level is normally considered to be the neuron’s state, with
incoming spikes pushing this value higher or lower, until
the state eventually either decays or if the firing threshold
is reached, the neuron fires. After firing the state variable
is reset to a lower value. According to (s

), SNN is a third generation artificial neuron that is most
biologically-inspired. SNNs are becoming a dominant agent
for brain-inspired neuromorphic computing - emulating the
brain with computational hardware (,).

Reservoir computing is a framework for computation de-
rived from recurrent neural network (RNN) theory that maps
input signals into higher dimensional computational spaces
through the dynamics of a fixed, non-linear system called
a reservoir (,). These type of algorithms

Udayan Ganguly
(Guide)
Indian Institute of Technology Bombay
Mumbai, India
udayan@ee.iitb.ac.in

Pre-spikes Synapses

LIF Neuron

Threshold
Wen) Post-spikes, 0,

e L

tot ty b

Vmom

[ty ty, time

Fig. 1. Illustration of Leaky Integrate and Fire (LIF) neuron dynamics (
,)

with shallow networks are computationally cheaper since only
the readout layer is trained as the reservoir dynamics are
fixed. By reducing network depth and plasticity, reservoir
computing minimizes computational power and complexity,
making the algorithms optimal for edge devices. However, as a
trade-off for their frugal nature, reservoir computing sacrifices
computational power compared to state-of-the-art methods.

A liquid state machine (LSM) is a type of reservoir compu-
tational model that uses a spiking neural network. The nodes
are randomly connected to each other. The recurrent nature of
the connections turns the time varying input into a spatio-
temporal pattern of activations in the network nodes. The
spatio-temporal patterns of activation are read out by linear
discriminant units.

According to (R), LSM model was de-
veloped from the viewpoint of computational neuroscience.
Its main benefit is that it performs real time computations
which transforms the time varying inputs stream to a higher
dimensional space. It has three main components:

(i) Input Layer
(i1) Reservoir or Liquid
(iii) Memoryless readout layer

The input to the LSM is of the form of spike trains. Various
decoding methods exist for interpreting the outgoing spike
train as a real-value number, relying on either the frequency
of spikes (rate-code), the time-to-first-spike after stimulation,
or the interval between spikes.

In Section-II consists of literature review of various research
papers related to the thesis project. Section-III describes the
project idea. Section-V describes preprocessing of data. We
conclude the paper with our analysis in Section-VI.

L7
S

HANAN!
WX

13

-
}
|

Fig. 2. A model of the liquid state machine (s)

II. RELATED WORKS

A. SpiLinC: Spiking Liquid-Ensemble Computing for Unsu-
pervised Speech and Image Recognition (,

)

In this research paper, the authors proposed an SNN con-
sisting of input neurons sparsely connected by plastic synapses
to a randomly interlinked liquid, referred to as Liquid-SNN,
for unsupervised speech and image recognition. It adapts
the strength of the synapses interconnecting the input and
liquid using Spike Timing Dependent Plasticity (STDP), which
enables the neurons to self-learn a general representation of
unique classes of input patterns. This infer the class of a test
input directly using the liquid neuronal spiking Activity. STDP
postulates that the strength (or weight) of a synapse depends
on the degree of timing correlation between the corresponding
pre- and post-neuronal spikes. The authors used the power-law
weight-dependent STDP model which is described as:

tpost - tpre

Aw =nxle T —STDPyf fset] X [Wimaz—w]* (1)
where Aw is the change in the synaptic weight, 7 is the
learning rate, t,,. and t,,s are respectively the time instants
of a pair of pre- and post-neuronal spikes, 7 is the STDP
time constant, Wy, is the maximum bound imposed on the
synaptic weight, and w is the current weight. If the pre-
synaptic neuron fires first, then the weight is increased; if the
post-synaptic neuron fires first then the weight is decreased.

Standard LSM have fixed synaptic connections between the
input and liquid followed by a readout layer (trained in a
supervised manner) to extract the liquid states and infer the
class of the input patterns. The recurrent connectivity and the
nonlinear neuronal dynamics enable the liquid to generate high
dimensional spike patterns (liquid states) for varied inputs.
The information loss is incurred by using fixed input to liquid
synaptic connections.

The authors propose SpiLinC that is composed of an en-
semble of multiple liquids operating in parallel. They used a
“divide and learn” strategy for SpiLinC, where each liquid is
trained on a unique segment of the input. SpiLinC incorporates
the principle of ensemble learning to recognize an input

pattern by training the constituent liquids to extract low-
level characteristic features. It rely on the unique nonlinear
representations produced by a liquid with fixed recurrent
connections to perform recognition. unsupervised training of
the liquid to readout connections using STDP would increase
the network complexity by necessitating larger number of
readout neurons with lateral inhibition.

A B

spiking activity of frequency Input Neurons

channels for an utterance of 0’ (Freq. Channels) Liquid-Ensemble Liquid-Ensemble

Input Image Pattern

Liquid-Ensemble

Fig. 3. Illustration of the Spiking Liquid-Ensemble Computing (SpiLinC)
architecture composed of a distributed arrangement of multiple liquids op-
erating in parallel. (A) Two-liquid SpiLinC, where each liquid constituting
the ensemble is trained with different frequency channels of a speech signal
(utterance of “0” in this example). (B) Four-liquid SpiLinC, where the
individual liquids are trained with separate partitions of an image pattern.

B. Preparing More Effective Liquid State Machines Using
Hebbian Learning (,)

An LSM that uses STDP synapses is a Hebbian Liquid
State Machine (HLSM). According to this research paper, the
effectiveness of an LSM is a function of two qualities: the
approximation and the separation of the LSM. Approximation
refers to the reading function’s ability to classify the state
vectors acquired from the liquid. Separation refers to “the
amount of separation between trajectories of internal states of
the system that are caused by two different input streams”; or
in other words, the ability of the liquid to produce discernibly
different patterns when given different classes of inputs.In
order to measure the separation of a liquid we use the
following definition :

N

N

i=1 j=1

where) is a neural microcircuit (or liquid), O is a set of state
vectors, and N is the total number of output classes represented
by o. O is divided into N subsets each of which contains all
elements of O belonging to a common output class. The center
of mass, C,, for each subset is calculated as follows:
> 05

0;€0

|04

There are certain negative behaviors common in LSMs that
can significantly decrease their separation. These behaviors are
termed pathological synchrony and overstratification. Patho-
logical synchrony occurs when most of the neurons in the
liquid get caught in infinite positive feedback loops with re-
spect to their firing. These infinite loops continuously influence
the state of the liquid overriding the flow of information from

Cm(0i) = 3)

the input. In extreme cases the entire liquid can begin firing
continuously in synchrony. Such liquids have low separation
because of the loss of pattern associated with such crowded
spiking. The opposite extreme is over-stratification—when
groups of neurons do not propagate a series of spikes induced
by an input spike long enough. In these cases, input spikes
do not influence each other within the liquid, thus resulting in
a loss of temporal coherency that can be represented by the
liquid.

=Hebbian Leamning (Pathological Synchrony) == Hebbian Leaming (Over-Stratification)
Random Updates (P: logical Synchrony) Random Updates (Over- on)

50

45
404 A
as E——.

30
o
20+ -
15 : v = 1
10 ,7 ——————

05

00

Separation

Iterations of Training

Fig. 4. Separation values for four experiments given completely random input.
Separation values are the mean reported by ten trials each with a different
initial liquid. The Hebbian learning trials don’t show a significant change
in separation while the random weight update trials show a steady drop in
separation after only ten iterations.

III. PROJECT IDEA

The idea that I wanted to try was to investigate the perfor-
mance of LSM by converting the image from spatial domain
to frequency domain. LSM has performed really well on
speech datasets like spoken digits where the model gave a
test accuracy of 99%. This shows that LSM can effectively
learn the temporal patterns in the speech dataset. But the
typical image datasets only contain spatial information and
not temporal information. Thus, I wanted to try out converting
the images to frequency domain using Fourier transform
during preprocessing stage. By this, we can expose the image
features that are not visible in spatial domain, eg. periodic
interferences.

The Fourier Transform is an important image processing
tool which is used to decompose an image into its sine and
cosine components. Thus, the output of fourier transform is
a complex function. The magnitude tells "how much” of a
certain frequency component is present and the phase tells
“where” the frequency component is in the image. Thus, the
phase represents the shape in the image.

IV. DATASET

The main dataset used in this project is the CIFAR-10
dataset. It is a collection of images that are commonly used to
train computer vision algorithms. It is one of the most widely
used datasets for machine learning research. It consists of
60000 32x32 RGB images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test
images. The classes are completely mutually exclusive.

airplane %E’ ’.z;_
automobile EEQEHH‘
w Emill WS b R
cat

deer

dog

frog

horse

ship

truck du“.ggiﬂﬂﬂ

Fig. 5. The above figure shows the classes in the CIFAR-10 dataset and 10
random samples from each

A. Why CIFAR-10 ?

We can distinguish an object from another by visualizing
the shape of that object. Since, we are converting the image
dataset into frequency domain, we want the image dataset to
be scale invariant. Moreover, we want the model to generalize
and make it more robust by using various data augmentation
techniques like random rotation, random crop, etc. We can’t
do that with MNIST because if you apply 180 degree rotation
to 6 then it becomes 9 and this belongs to a different class.
Thus, the model might learn insignificant hidden features and
perform poorly. Moreover, MNIST consists of only grey-
scale image while CIFAR-10 has 3 channel images. Thus,
classification of CIFAR-10 is a more difficult task.

From Fig.6, we can clearly notice the difference in the
Phase of the Fourier transform of the images. Thus, the model
will be able to capture the shape differences for CIFAR-10
dataset. The two cars have different sizes and orientations
and thus have different representation in frequency domain.
Thus, our model might be able to generalize by finding out
the underlying hidden features and build a robust classifier.

B. Other datasets explored

1) MNIST: MNIST is a dataset of handwritten digits of size
28x28 and are gray-scaled. It contains contains 60,000 training
images and 10,000 testing images. Currently, LSM is widely
tested on this dataset.

2) N-MNIST & N-Caltech101: The Neuromorphic-MNIST
(N-MNIST) dataset is a spiking version of the original frame-
based MNIST dataset. It consists of the same 60000 training
and 10000 testing samples as the original MNIST dataset, and
is captured at the same visual scale as the original MNIST
dataset (28x28 pixels). The Neuromorphic-Caltech101 (N-
Caltech101) dataset is a spiking version of the original frame-
based Caltech101 dataset (Orchard et al., 2015). These dataset

Plane (S)

8yl

Horse (S)

Car (F)

Car (S)

Fig. 6. Left side images denote the Phase of the Fourier transform of the
image. The right side images are the corresponding spatial domain. (Note :
In the captions, F stands for frequency domain and S for spatial domain)

was captured by mounting the ATIS sensor on a motorized
pan-tilt unit and having the sensor move while it views MNIST
or Caltech101 examples on an LCD monitor.(Note : A saccade
is a quick, simultaneous movement of both eyes between two
or more phases of fixation in the same direction. In contrast,
in smooth pursuit movements, the eyes move smoothly instead

of in jumps.)

v A S L WN~
SAT e b -0
YU TWNMN—O

Dl d e LUBV~—o

Soad raah ey —o
Do~ pnLwih~No
A I TSN N O
DN oL AyR-—~-0
LRI FhRxCPMPND
S99 I RNALWW~D

DU RwWr —~ D
Db NSO LhL—0

SAHP YW -

QDRI R =W D

L AN TWPND
S wdgANzWp -0

Fig. 7. The above figure shows the classes in the MNIST dataset and 16

random samples from each

Time (ms)
o @
3 3

~
S

80

90

100

Saccade 1

Saccade 2

Saccade 3

Time (ms)
u
=]

b)

Qo

w n -
1=} S o

B
[}

© ~ -3
S S 1=}

0
S

EEENONOEEE

100

s ulololole o]
EEEDEOESNEE

° Saccade 1 Saccade 2 Saccade 3

Fig. 8. The above figure shows one example recording from each of the
N-Caltech101 (left) and N-MNIST (right) datasets. The original images are
shown at the top, with neuromorphic recordings shown below. Each of the
neuromorphic subimages contains 10 ms of events. In each case the most
events are present near the middle of a saccade when the sensor is moving
fastest.

3) CIFARIO-DVS: A Dynamic Vision Sensor (DVS) cam-
era with the spatial resolution of 128 x 128 was used to
convert 10,000 frame-based images into 10,000 event streams

(9)'
V. DATA PREPROCESSING

In their paper (,), for the color image datasets
like CIFAR-10, the authors have used the pre-processing
technique of horizontal flip before generating input spikes.
These input pixels are normalized to represent zero mean
and unit standard deviation. Thereafter, they scaled the pixel
intensities to bound them in the range [-1,1] to represent the
whole spectrum of input pixel representations. The normalized
pixel intensities are converted to Poisson-distributed spike
events such that the generated input signals are bipolar spikes.

A. Input spike generation

One approach for representing an CIFAR-10 image using
spike trains is to create a set of 32x32x3 = 3072 spike
train sequences where each sequence has a firing rate that is
proportional to the pixel value. Pixels with small values will
be assigned a small firing rate and generate mostly 0-values
in their associated spike train. Pixel values that are moderate
in magnitude, such as 126 = 7Eh, will be assigned a moderate
firing rate and generate roughly 50% spiking 1 values and 50%
non-spiking O values. Pixel values that are large, such as 255
= FFh will be assigned a large firing rate and generate spike
trains that are mostly 1 values.

Since the resulting spike trains have a random component,
we need to create very long spike trains for each pixel. I chose
the the interval of duration dt = 0.1ms and number of bins
(nBins) = 1000. Thus, for 1 sample image, spike train size
would be 3072x1000.

Code for spike train generaion:

out_fs = 10000

nBins = 1000

dt = 1/out_fs;

nTrials = numel (dataset.data(l,:));

for 1 = 1: numel (dataset.data(:,1))
spikeMat = rand(nTrials , nBins);
for 3 = l:numel (dataset.data(l,:))
fr = double (dataset.data (i, :));
spikeMat (j,:) = spikeMat (7, :)
end
spikeMat =sparse(logical (spikeMat));

end

< frxdt;

The above code gives us spike train for CIFAR-10 dataset
which is in spatial domain. I created another spike train in
which Fast fourier transform (FFT) was first applied on all
images of the dataset and then the above process was followed
again.

VI. RESULTS AND DISCUSSIONS

o N & O ®

Reservoir size = 8x8x8
Fig. 9. Reservoir connections

Reservoir size = 3x3x3

I set the training/validation split to 8000/2000. The input
was poisson spike trains and the readout layer is a linear
classifier.

250

200

Reservoir Size
o
w
(=]

=
=}
S

50

200 300 400 500 600

Time taken

Fig. 10. Variation of time taken (in seconds) for computations for Spoken
digit dataset with reservoir size

Reservoir Accuracy Time
Size CIFAR-10 | Fourier CIFAR-10 | taken
5x5x5 26% 20% 2hrs
6x6x6 38% 27% 2.5hrs
8x8x8 48% 36% 4hrs

From the table, we can clearly conclude that validation ac-
curacy increases on increasing the reservoir size. The accuracy
achieved for reservoir size of 8x8x8 is reasonable enough
when compared to the benchmark as high accuracy is achieved
for CNN architectures.

Figure 10 shows variation of time taken (in seconds) for
computations with reservoir size. This experiment was per-
formed for spoken digits dataset. It clearly shows that time
increases linearly with increase in reservoir size.

Limitations of LSM :

e LSM act as a black box and thus don’t explain how the

brain functions

o There is no guaranteed way to figure out how or what

computations are being performed

VII. CONCLUSION & FUTURE WORK

LSM have various advantages over artificial neural net-
works. Circuits dont need to be hard coded for a specific task
and continuous time inputs are handled naturally. They do have
limitations as they act as a black box. It seems that standard
CIFAR-10 spike train gives better accuracy than the fourier
transformed CIFAR-10 spike train. But more experiments need
to be done by changing the hyper-parameters of spike train
generation and need to analyze the raster plots. Also, more
experiments need to be performed by varying the size of the
reservoir. GPU acceleration can also be utilized to speed up
the computations.

REFERENCES
Ji Xiangyang Li Guoqi Shi Luping Hongmin Li, Liu Hanchao.
Cifar10-dvs: An event-stream dataset for object classifica-
tion. Frontiers in Neuroscience, 11:309, 2017. ISSN 1662-
453X. doi: 10.3389/fnins.2017.00309.

Chankyu Lee, Sarwar Syed Shakib, Panda Priyadarshini, Srini-
vasan Gopalakrishnan, and Roy Kaushik. Enabling spike-
based backpropagation for training deep neural network
architectures. Frontiers in Neuroscience, 14:119, 2020.
ISSN 1662-453X. doi: 10.3389/fnins.2020.00119.

Yu Liu, Sai Sourabh Yenamachintala, and Peng Li. Energy-
efficient fpga spiking neural accelerators with supervised
and unsupervised spike-timing-dependent-plasticity. ACM
Journal on Emerging Technologies in Computing Systems,
15(3):1-19, 2019. doi: 10.1145/3313866.

W. Maass, T. Natschliger, and H. Markram. Real-time
computing without stable states: A new framework for
neural computation based on perturbations. Neural Com-
putation, 14:2531-2560, 2002. ISSN 11. doi: 10.1162/
089976602760407955.

D. Norton and D. Ventura. Preparing more effective liquid
state machines using hebbian learning. In The 2006 IEEE
International Joint Conference on Neural Network Proceed-
ings, pages 4243-4248, 2006. doi: 10.1109/IJCNN.2006.
246996.

Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and
Nitish Thakor. Converting static image datasets to spiking
neuromorphic datasets using saccades. Frontiers in Neuro-
science, 9:437, 2015. ISSN 1662-453X. doi: 10.3389/fnins.
2015.00437.

M. T. Sharbati, Y. Du, J. Torres, N. D. Ardolino, M. Yun, and
F. Xiong. Low-power, electrochemically tunable graphene
synapses for neuromorphic computing. Communication,
2018. doi: https://doi.org/10.1002/adma.201802353.

Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik
Roy. Spiking liquid-ensemble computing for unsupervised
speech and image recognition. Frontiers in Neuroscience,
12:524, 2018. ISSN 1662-453X. doi: 10.3389/fnins.2018.
00524.

Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux,
Ryosho Nakane, Naoki Kanazawa, Seiji Takeda, Hidetoshi
Numata, Daiju Nakano, and Akira Hirose. Recent ad-
vances in physical reservoir computing: A review. Neural
Networks, 115:100 — 123, 2019. ISSN 0893-6080. doi:
https://doi.org/10.1016/j.neunet.2019.03.005.

Julie Wall and Cornelius Glackin. Spiking neural network
connectivity and its potential for temporal sensory pro-
cessing and variable binding. Frontiers in Computational
Neuroscience, 7:182, 2013. ISSN 1662-5188. doi: https:
//doi.org/10.3389/fncom.2013.00182.

	Introduction
	Related Works
	SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition litrev1
	Preparing More Effective Liquid State Machines Using Hebbian Learning litrev2

	Project Idea
	Dataset
	Why CIFAR-10 ?
	Other datasets explored
	MNIST
	N-MNIST & N-Caltech101
	CIFAR10-DVS

	Data Preprocessing
	Input spike generation

	Results and Discussions
	Conclusion & Future work

