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Problem Statement

Our task was to identify the accent of a given speaker. Automatic identification of
foreign accents is valuable for many speech systems, such as speech recognition,
speaker identification, voice conversion, etc. 

Methodology

There are two parts to this problem 1) Feature extraction and 2) Classification via
extracted features.
Since  differences  in  accent  are  due  to  both  prosodic  and  articulation
characteristics,  a  combination  of  long-term  and  short-term  feature  extraction
training was used.
The feature extraction pipeline for our approach is as follows :-
Speech -> Silence Removal -> Feature Extraction -> PCA -> Improved Features.
(PCA was not used by us because it lead to a reduction in accuracy. Also Silence
removal consists of removing all the blank spaces from the wav file) 
We extract two types of features i) Long term features ii) Short term features. The
long term features were then fed to a Deep NN with the parameters as suggested
in the paper (further details in the section implementation details) and the output
was a 5 node softmax layer which would represent the probabilities of the input
being in a specific class.  The short term features are fed into a RNN and its
probabilities for the input being in one of  the classes was calculated. The two
probabilities  were merged by assigning weights  to them corresponding to their
prediction accuracies.

Existing Approaches

There are many existing approaches related to this problem but the approaches we
liked  were  1)  Accent  identification  by  combining  deep  neural  networks  and



recurrent neural  networks trained on long and short term features by Jiao et al.
(implemented in this project)
2)  Improved  Accent  Classification  Combining  Phonetic  Vowels  with  Acoustic
Features by Zhenhao Ge (this is described below)
The author has tried to combine phonetic knowledge in the accent recognition
problem instead of just using the acoustic features. Also his  feature extraction
pipeline is a little bit different than the one shown above. As for the classifier he
uses a GMM-UBM model which is described as follows. He used a simple fact that
most identifiable accents are presented from the pronunciation of vowels rather
than consonants and thus computed multiple vowel-specific GMMs with features of
the vowel components.

Implementation Details

The RNN and DNN models were written using Keras library and all testing and 
training was done on google collab.

VAD and segmentation

First the empty spaces and the stops from the speech are removed using 
VAD(voice activity detection). Then the dataset samples were cut down into 4 
second segments(they were originally of size 36 seconds) hence around 8-9 
segments (as some data is removed after passing through VAD) from a single data 
sample were created. 

Long term feature extraction

This was done by a module called openSmile in which we had to write a config file
to extract the required set of parameters. Also these features were introduced in
Interspeech 2013 competition and they had given how the features were to be
extracted. The features were of length 6373 per 4s segment. 

Small term feature extraction

This was done by a python library called python_speech_features which gives
mfcc features directly. The 4s segment was sampled by taking a 25ms window
which was shifted by 10ms so that it would cover the entire 4s. This would give
399 samples and 39 mfcc features per sample. But 39 features were taking too



much time when fed to a RNN, hence we decided to remove the delta and the
double delta features.

Training of long term
features using DNN

The  long  term  features  were
then  passed  through  a  DNN
whose structure is as follows.

The input layer contains 6373
features.  Three  hidden  layers
with  256  nodes  for  each
followed. Rectifier linear units
(“ReLU”)  were  used  at  the
output  of  each  layer  and  we
use  the  dropout  method  to
prevent over fitting, each input
unit to the next layer can be
dropped  with  0.3  probability.
The output  layer  contained 5
nodes  corresponding  to  the  5
accents  with  softmax
activation  functions.  Adam
optimizer  was  used  with
learning  rate  1e-5  and  batch
size was fixed to 128.

Short term feature training using RNN

The  RNN was  trained  on  the  short-term  features  extracted  from  the  speech.
Categorical labels were assigned to each frame of the segment. The results for each
sample were calculated by averaging the predictions on all frames in all segments.
The structure of RNN is as follows: The input data is sequentially fed into the
RNN frame-by-frame. Each frame is of dimension 39. Two hidden layers with 512
long short term memory (LSTM) nodes were used. The activation function for the



gates was a ‘logistic sigmoid’ and for updating the cell state, we used a ‘tanh’. The
accent label was assigned to every 25ms speech frame - the LSTM layers allowed
the model to learn long-term dependencies by taking the output of the previous
hidden nodes as part of the inputs to the current node s. The hyper parameters for
epochs was chosen to be 1(it itself takes around 6 hours of training time), batch-
size=1, optimizer was Adam with lr=1e-5 and validation split=0.2.

Final accuracies by combining the results of DNN and RNN

The final output will be calculated by fusing the results from the DNN and the
RNN. This is done by first calculating the accuracies they get individually on the
validation set.

Where the weights w_DNN and w_RNN are calculated as follows:

The  accuracies  are  those  which  are  calculated  on  the
validation1 sets of the respective structures.

Experiments and Discussion

The dataset consisted of 63 wav files each of Arabic, English, Mandarin, French
and Spanish languages. Each wav file was of nearly 36 seconds and all of them
consisted of everyone saying the same sentence. After VAD and segmentation the
total number of wav files came out to 2466.

Model Peculiarity
Train

Accuracy
Validation
Accuracy

DNN (epochs = 50) 53.12% 52.50%

DNN (epochs = 100) 70.56% 53.3%

1 It was changed to what ma’am had said in the presentation (i.e instead of using training accuracies use 
validation accuracies)



RNN (epochs = 1 and input feature space
trimmed)

65% 55%

DNN with RNN NA
Test accuracy 
54.9%2

The paper which was used as reference had 11 classes and had achieved accuracies
of 50.2% on all the classes.

Confusion Matrix

The confusion matrix was calculated on the validation set which consisted of 400
samples.

PRE/TRUE Arabic English French Mandarin Spanish

Arabic 69 5 4 10 6

English 2 51 3 7 4

French 9 4 40 13 9

Mandarin 5 7 1 63 3

Spanish 9 7 3 2 64
As can be seen here French is mis-classified the highest number of times.

Summary

In this project we tried to classify accent by separately training on the long term
and short term features and then fusing the results together. This project could be
extended to perform better by including the phonetic vowel dependencies as was
mentioned in the related work (second paper)
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