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Problem Statement

Our task was to identify the accent of a given speaker. Automatic identification of
foreign accents is valuable for many speech systems, such as speech recognition,

speaker identification, voice conversion, etc.

Methodology

There are two parts to this problem 1) Feature extraction and 2) Classification via
extracted features.

Since differences in accent are due to both prosodic and articulation
characteristics, a combination of long-term and short-term feature extraction
training was used.

The feature extraction pipeline for our approach is as follows :-

Speech -> Silence Removal -> Feature Extraction -> PCA -> Improved Features.
(PCA was not used by us because it lead to a reduction in accuracy. Also Silence
removal consists of removing all the blank spaces from the wav file)

We extract two types of features i) Long term features ii) Short term features. The
long term features were then fed to a Deep NN with the parameters as suggested
in the paper (further details in the section implementation details) and the output
was a b node softmax layer which would represent the probabilities of the input
being in a specific class. The short term features are fed into a RNN and its
probabilities for the input being in one of the classes was calculated. The two
probabilities were merged by assigning weights to them corresponding to their

prediction accuracies.

Existing Approaches

There are many existing approaches related to this problem but the approaches we

liked were 1) Accent identification by combining deep neural networks and



recurrent neural networks trained on long and short term features by Jiao et al.
(implemented in this project)

2) Improved Accent Classification Combining Phonetic Vowels with Acoustic
Features by Zhenhao Ge (this is described below)

The author has tried to combine phonetic knowledge in the accent recognition
problem instead of just using the acoustic features. Also his feature extraction
pipeline is a little bit different than the one shown above. As for the classifier he
uses a GMM-UBM model which is described as follows. He used a simple fact that
most identifiable accents are presented from the pronunciation of vowels rather
than consonants and thus computed multiple vowel-specific GMMs with features of

the vowel components.

Implementation Details
The RNN and DNN models were written using Keras library and all testing and

training was done on google collab.

VAD and segmentation

First the empty spaces and the stops from the speech are removed using
VAD(voice activity detection). Then the dataset samples were cut down into 4
second segments(they were originally of size 36 seconds) hence around 8-9
segments (as some data is removed after passing through VAD) from a single data

sample were created.

Long term feature extraction

This was done by a module called openSmile in which we had to write a config file
to extract the required set of parameters. Also these features were introduced in
Interspeech 2013 competition and they had given how the features were to be

extracted. The features were of length 6373 per 4s segment.

Small term feature extraction

This was done by a python library called python_ speech features which gives
mfcc features directly. The 4s segment was sampled by taking a 25ms window
which was shifted by 10ms so that it would cover the entire 4s. This would give

399 samples and 39 mfcc features per sample. But 39 features were taking too



much time when fed to a RNN, hence we decided to remove the delta and the

double delta features.
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size was fixed to 128. term features using DNNs and RNNs.

Short term feature training using RNN

The RNN was trained on the short-term features extracted from the speech.
Categorical labels were assigned to each frame of the segment. The results for each
sample were calculated by averaging the predictions on all frames in all segments.
The structure of RNN is as follows: The input data is sequentially fed into the
RNN frame-by-frame. Each frame is of dimension 39. Two hidden layers with 512

long short term memory (LSTM) nodes were used. The activation function for the



gates was a ‘logistic sigmoid’ and for updating the cell state, we used a ‘tanh’. The
accent label was assigned to every 25ms speech frame - the LSTM layers allowed
the model to learn long-term dependencies by taking the output of the previous
hidden nodes as part of the inputs to the current node s. The hyper parameters for
epochs was chosen to be 1(it itself takes around 6 hours of training time), batch-

size=1, optimizer was Adam with lr=1e-5 and validation split=0.2.

Final accuracies by combining the results of DNN and RNN

The final output will be calculated by fusing the results from the DNN and the
RNN. This is done by first calculating the accuracies they get individually on the

validation set.
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Where the weights w__DNN and w__ RNN are calculated as follows:

The accuracies are those which are calculated on the Ace pn n

WpNN = Acen N +ACCRNN

. . 1 .
validation™ sets of the respective structures. WENN = 1 — WDONN

Experiments and Discussion

The dataset consisted of 63 wav files each of Arabic, English, Mandarin, French
and Spanish languages. Each wav file was of nearly 36 seconds and all of them
consisted of everyone saying the same sentence. After VAD and segmentation the

total number of wav files came out to 2466.

Train Validation
Model Peculiarity
Accuracy Accuracy
DNN (epochs = 50) 53.12% 52.50%
DNN (epochs = 100) 70.56% 53.3%

1 It was changed to what ma’am had said in the presentation (i.e instead of using training accuracies use
validation accuracies)



RNN (epochs = 1 and input feature space
65% 55%
trimmed)

Test accuracy

DNN with RNN NA )
54.9%

The paper which was used as reference had 11 classes and had achieved accuracies

of 50.2% on all the classes.
Confusion Matrix

The confusion matrix was calculated on the validation set which consisted of 400

samples.

PRE/TRUE | Arabic English French Mandarin Spanish
Arabic 69 ) 4 10 6
English 2 51 3 7 4
French 9 4 40 13 9
Mandarin 5 7 1 63 3
Spanish 9 7 3 2 64

As can be seen here French is mis-classified the highest number of times.

Summary

In this project we tried to classify accent by separately training on the long term
and short term features and then fusing the results together. This project could be
extended to perform better by including the phonetic vowel dependencies as was

mentioned in the related work (second paper)
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